Dedekind sums and quadratic residue symbols

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Elliptic Apostol-dedekind Sums Generate Odd Dedekind Symbols with Laurent Polynomial Reciprocity Laws

Abstract. Dedekind symbols are generalizations of the classical Dedekind sums (symbols). There is a natural isomorphism between the space of Dedekind symbols with Laurent polynomial reciprocity laws and the space of modular forms. We will define a new elliptic analogue of the Apostol-Dedekind sums. Then we will show that the newly defined sums generate all odd Dedekind symbols with Laurent poly...

متن کامل

Higher Dimensional Dedekind Sums

In this paper we will study the number-theoretical properties of the expression v1 nkal rcka,, d(p; a I . . . . . an) = ( 1) n/2 ~ cot cot (1) k=l P P and of related finite trigonometric sums. In Eq. (I), p is a positive integer, a~ . . . . . a, are integers prime to p, and n is even (for n odd the sum is clearly equal to zero). There are two reasons for being interested in sums of this type. F...

متن کامل

Dedekind Cotangent Sums

Let a, a1, . . . , ad be positive integers, m1, . . . ,md nonnegative integers, and z1, . . . , zd complex numbers. We study expressions of the form ∑

متن کامل

A hybrid mean value involving a new Gauss sums and Dedekind sums

‎In this paper‎, ‎we introduce a new sum‎ ‎analogous to Gauss sum‎, ‎then we use the properties of the‎ ‎classical Gauss sums and analytic method to study the hybrid mean‎ ‎value problem involving this new sums and Dedekind sums‎, ‎and‎ ‎give an interesting identity for it.

متن کامل

Generating functions and generalized Dedekind sums

We study sums of the form ∑ ζ R(ζ), where R is a rational function and the sum is over all nth roots of unity ζ (often with ζ = 1 excluded). We call these generalized Dedekind sums, since the most well-known sums of this form are Dedekind sums. We discuss three methods for evaluating such sums: The method of factorization applies if we have an explicit formula for ∏ ζ(1− xR(ζ)). Multisection ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1990

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s002776300000297x